Publicaciones

2025

  • Gutierrez, L. N., Fierens, P. I., Grosz, D. F., & Hernandez, S. M. (2025). Soliton generation through temporal reflection in media with a frequency-dependent nonlinearity. Optics Letters, 50(4), 1168–1171. https://doi.org/10.1364/OL.547951
  • Jandar, C. N., Fernández, G. R., Aguilar, A. M., Prado, A., Grosz, D. F., & Martínez, E. D. (2025). Improved temperature sensing in upconversion fiber-optic probes via spectral modulation by cladding removal. ACS Applied Optical Materials, 3(1), 91–101. https://doi.org/10.1021/acsaom.4c00420

2024

  • Sparapani, A. C., Hernandez, S. M., Fierens, P. I., Grosz, D. F., & Agrawal, G. P. (2024). Optical fibers with a frequency-dependent Kerr nonlinearity: Theory and applications. Wave Motion (North-Holland Publishing Company), 130(103386), 103386. https://doi.org/10.1016/j.wavemoti.2024.103386
  • Sparapani, Alexis C., Gutierrez, L. N., Hernandez, S. M., Fierens, P. I., Grosz, D. F., & Agrawal, G. P. (2024). Raman suppression and all-optical control in media with a zero-nonlinearity wavelength. IEEE Journal of Quantum Electronics, 60(4), 1–6. https://doi.org/10.1109/jqe.2024.3424417

2023

  • Bonetti, J., Hernandez, S.M., Grosz, D. F. (2023). Quantum key distribution via frequency translation in a nonlinear optical fiber. Optica Pura y Aplicada, 56(2), 51118. https://doi.org/10.7149/opa.56.2.51118
  • Sparapani, A. C., Bonetti, J., Linale, N., Hernandez, S. M., Fierens, P. I., & Grosz, D. F. (2023). Temporal reflection and refraction in the presence of a zero-nonlinearity wavelength. Optics Letters, 48(2), 339–342. https://doi.org/10.1364/OL.475597

2022

  • Bonetti, J., Linale, N., & Grosz, D. F. (2022). Heralded single-photon sources based on 2D-decorated nanowires. Physics Letters. A, 432(128018), 128018. https://doi.org/10.1016/j.physleta.2022.128018
  • Fernández, G., Sparapani, A. C., Linale, N., Benítez, J. C., & Grosz, D. F. (2022). A proposal for linear and nonlinear discrete and distributed sensing of mechanical strain with graphene-decorated optical fibers. Optical Fiber Technology, 73(103046), 103046. https://doi.org/10.1016/j.yofte.2022.103046
  • Fierens, P. I., Hernandez, S. M., Linale, N., & Grosz, D. F. (2022). Theoretical analysis of spectral broadening through saturable photoexcited-carrier refraction in graphene-covered nanowires. IEEE Journal of Quantum Electronics, 58(6), 1–5. https://doi.org/10.1109/jqe.2022.3205937
  • Hernandez, S. M., Sparapani, A., Linale, N., Bonetti, J., Grosz, D. F., & Fierens, P. I. (2022). Dispersive waves and radiation trapping in optical fibers with a zero-nonlinearity wavelength. Waves in Random and Complex Media, 1–15. https://doi.org/10.1080/17455030.2021.2023232
  • Sparapani, A., Fernández, G., Sánchez, A. D., Bonetti, J., Linale, N., & Grosz, D. F. (2022). All-optical pulse-train generation through the temporal analogue of a laser. Optical Fiber Technology, 68(102785), 102785. https://doi.org/10.1016/j.yofte.2021.102785
  • Linale, N., Fierens, P. I., Vermeulen, N., & Grosz, D. F. (2022). A generic model for the study of supercontinuum generation in graphene-covered nanowires. JPhys Photonics, 4(1), 015001. https://doi.org/10.1088/2515-7647/ac4277
  • Hernandez, S. M., Bonetti, J., Linale, N., Grosz, D. F., & Fierens, P. I. (2022). Soliton solutions and self-steepening in the photon-conserving nonlinear Schrödinger equation. Waves in Random and Complex Media, 32(5), 2533–2549. https://doi.org/10.1080/17455030.2020.1856970

2021

  • Bonetti, J., Grosz, D. F., & Hernandez, S. M. (2021). Quantum noise in fibers with arbitrary nonlinear profiles. Physical Review Letters, 126(21), 213602. https://doi.org/10.1103/PhysRevLett.126.213602
  • Bonetti, J., Hernandez, S. M., & Grosz, D. F. (2021). Master equation approach to propagation in nonlinear fibers. Optics Letters, 46(3), 665–668. https://doi.org/10.1364/OL.417975
  • Linale, Nicolas, Bonetti, J., Fierens, P. I., Hernandez, S. M., & Grosz, D. F. (2021). A direct method for the simultaneous estimation of self-steepening and the fractional Raman contribution in fiber optics. IEEE Journal of Quantum Electronics, 57(3), 1–7. https://doi.org/10.1109/jqe.2021.3070003
  • Linale, Nicolas, Bonetti, J., Sanchez, A. D., Fierens, P. I., & Grosz, D. F. (2021). Model for frequency-dependent nonlinear propagation in 2D-decorated nanowires. IEEE Journal of Quantum Electronics, 57(4), 1–8. https://doi.org/10.1109/jqe.2021.3082523
  • Linale, Nicolas, Fierens, P. I., & Grosz, D. F. (2021). Revisiting soliton dynamics in fiber optics under strict photon-number conservation. IEEE Journal of Quantum Electronics, 57(2), 1–8. https://doi.org/10.1109/jqe.2020.3047691
  • Sánchez, A. D., Linale, N., & Grosz, D. F. (2021). Simple model for the nonlinear optical response of dimer-doped waveguides. Journal of the Optical Society of America. B, Optical Physics, 38(1), 17. https://doi.org/10.1364/josab.405314

2020

  • Bonetti, J., Linale, N., Sánchez, A. D., Hernandez, S. M., Fierens, P. I., & Grosz, D. F. (2020). Photon-conserving generalized nonlinear Schrödinger equation for frequency-dependent nonlinearities. Journal of the Optical Society of America. B, Optical Physics, 37(2), 445. https://doi.org/10.1364/josab.377891
  • Linale, N., Bonetti, J., Sánchez, A. D., Hernandez, S., Fierens, P. I., & Grosz, D. F. (2020). Modulation instability in waveguides with an arbitrary frequency-dependent nonlinear coefficient. Optics Letters, 45(9), 2498–2501. https://doi.org/10.1364/OL.388677
  • Linale, N., Bonetti, J., Sparapani, A., Sánchez, A. D., & Grosz, D. F. (2020). Equation for modeling two-photon absorption in nonlinear waveguides. Journal of the Optical Society of America. B, Optical Physics, 37(6), 1906. https://doi.org/10.1364/josab.392348
  • Linale, N., Fierens, P. I., Bonetti, J., Sánchez, A. D., Hernandez, S. M., & Grosz, D. F. (2020). Measuring self-steepening with the photon-conserving nonlinear Schrödinger equation. Optics Letters, 45(16), 4535–4538. https://doi.org/10.1364/OL.401096
  • Linale, N., Fierens, P. I., Hernandez, S. M., Bonetti, J., & Grosz, D. F. (2020). Narrowband and ultra-wideband modulation instability in nonlinear metamaterial waveguides. Journal of the Optical Society of America. B, Optical Physics, 37(11), 3194. https://doi.org/10.1364/josab.393464
  • Sánchez, A. D., Linale, N., Bonetti, J., & Grosz, D. F. (2020). Modulation instability in waveguides doped with anisotropic nanoparticles. Optics Letters, 45(11), 3119–3122. https://doi.org/10.1364/OL.391819

2019

  • Bonetti, J., Hernandez, S. M., Fierens, P. I., & Grosz, D. F. (2019). A higher-order perturbation analysis of the nonlinear Schrödinger equation. Communications in Nonlinear Science & Numerical Simulation, 72, 152–161. https://doi.org/10.1016/j.cnsns.2018.12.010
  • Bonetti, J., Linale, N., Sánchez, A. D., Hernandez, S. M., Fierens, P. I., & Grosz, D. F. (2019). Modified nonlinear Schrödinger equation for frequency-dependent nonlinear profiles of arbitrary sign. Journal of the Optical Society of America. B, Optical Physics, 36(11), 3139. https://doi.org/10.1364/josab.36.003139
  • Sánchez, A. D., Linale, N., Bonetti, J., Hernandez, S. M., Fierens, P. I., Brambilla, G., & Grosz, D. F. (2019). Simple method for estimating the fractional Raman contribution. Optics Letters, 44(3), 538. https://doi.org/10.1364/ol.44.000538

2018

  • Sánchez, A. D., Fierens, P. I., Hernandez, S. M., Bonetti, J., Brambilla, G., & Grosz, D. F. (2018). Anti-Stokes Raman gain enabled by modulation instability in mid-IR waveguides. Journal of the Optical Society of America. B, Optical Physics, 35(11), 2828. https://doi.org/10.1364/josab.35.002828
  • Sánchez, A. D., Hernandez, S. M., Bonetti, J., Fierens, P. I., & Grosz, D. F. (2018). Tunable Raman gain in mid-IR waveguides. Journal of the Optical Society of America. B, Optical Physics, 35(1), 95. https://doi.org/10.1364/josab.35.000095

2017

  • Hernandez, S. M., Fierens, P. I., Bonetti, J., Sanchez, A. D., & Grosz, D. F. (2017). A geometrical view of scalar modulation instability in optical fibers. IEEE Photonics Journal, 9(5), 1–8. https://doi.org/10.1109/jphot.2017.2754984

2016

  • Bonetti J., Hernandez S. M., Fierens P. I. & Grosz D. F. (2016). Analytical study of coherence in seeded modulation instability.Phys. Rev. A, 94, 033826. https://doi.org/10.1103/PhysRevA.94.033826

Patentes

  • “Dispositivo de detección óptica y método de medición distribuida lineal para medir deformaciones mecánicas de materiales y estructuras”. Solicitud de patente Nº: 20210102993
  • “Método de medición no lineal para medir deformaciones mecánicas de materiales y estructuras”. Solicitud de patente Nº: 20210103011
  • “Método de medición distribuida no lineal para medir deformaciones mecánicas de materiales y estructuras”. Solicitud de patente N°: 20230102020